2019年研究生学术前沿讲座(9)
主 讲 人:梁汉营 教授 同济大学
主题名称:Weighted estimation of conditional mean function with truncated, censored and dependent data
内容简要:
By applying the empirical likelihood method, we construct a new weighted estimator of the conditional mean function for a left-truncated and right-censored model. Assuming that the observations form a stationary $/alpha$-mixing sequence, we derive weak convergence with a certain rate and prove asymptotic normality of the weighted estimator. The asymptotic normality shows that the weighted estimator preserves the bias, variance, and, more importantly, automatic good boundary behavior of a local linear estimator of the conditional mean function. Also, a Berry-Esseen type bound for the weighted estimator is established. A simulation study is conducted to study the finite sample behavior of the new estimator and a real data application is provided.
时间地点:2019年4月11日(周四)13:00 地点:经济管理学院335
主办学院:经济管理学院
研究生院
2019.3.28